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While you were reading this sentence, several yottabytes of new data has been 
registered all over the world. It is extremely hard, to build computer systems that scale 
to the amount of information we gather nowadays. That’s why it’s crucial to find good, 
efficient representation of our data. Here, we give an example of a highly compacted 
representation for a complex dataset of 3D point clouds.

COMPACT BINARY REPRESENTATIONS 
AND GENERATIVE MODELS

LEARNING REPRESENTATIONS

METHODOLOGY

WORKING WITH 3D POINT CLOUDS

SIDE PROJECT: CLUSTERING WITH VAE

‣ We display the potential of VAE’s to find 
compact representations by applying them to 
datasets of 3D point clouds.  

‣ We learn representations of objects belonging 
to a single class from the ShapeNet and 
ModelNet40 datasets. 

‣ We base the reconstruction loss on the 
Chamfer distance (CD) to obtain point 
permutation invariance.

‣ To facilitate working with spatial data we 
make use of the PointNet architecture.  

‣ We use a simple MLP decoder to encourage 
a more meaningful representation.

‣ Our goal is to find as compact representation 
as possible. 

‣ We train two benchmark models: a baseline 
autoencoder (discriminative) and a standard 
VAE (generative), i.e. with .  

‣ This gives us two continuous representations. 
‣ We continue by proposing a method to obtain 

a representation of the same dimension, but 
with binary components. 

‣ Namely we assume that  has  independent 
components, each of which is distributed with 
Beta(0.01, 0.01). 

‣ The Beta distribution is used here because (1) 
its support is the (0, 1) interval, (2) it’s highly 
and equally condensed near 0 and 1. 

Z ∼ 𝒩(0,Ik)
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‣ We train the model like a standard VAE, in a 
continuous fashion. 

‣ If we manage to get a well regularized model, 
the sampled representations should contain 
values very close to 0 and 1. 

‣ We obtain the binary representation by 
thresholding the continuous one at 0.5. 

Fig. 1: Schematic representation of a VAE.

‣ We are given a dataset , containing some 
-dimensional samples . 

‣ We seek a compact representation of this 
data that generalizes to unseen examples. 

‣ We would also like to generate artificial 
samples.
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RESULTS

‣ Suppose each sample  is an observation of 
a random variable  whose distribution 
depends on a latent variable . 

‣ We assume  has a parametrized distribution 
with known true parameters. 

‣ Also  is normally distributed with mean 
being a complicated, parametrized 
transformation of  with unknown parameters. 

‣ We use a variational autoencoder (VAE) to 
capture dependencies between  and . 

‣ This allows us to construct a representation of 
data in a regularized space, which allows us to 
sample new data points.
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Fig. 2: Density of the Beta(0.01, 0.01) distribution and the histogram 
of representation values produced by the Beta-regularized model.

‣ The binarization (thresholding) of Beta-
regularized representation has a minor effect 
on reconstruction quality. 

‣ Our continuous and discrete models 
reconstruct train and test data well, perform 
natural interpolations, allow for predictable 
arithmetics on objects and artificial data 
generation. 

‣ The binary representation allows for 
reconstructions of quality visually comparable 
to continuous, yet it occupies 32x less space 
(with single-precision floats).

‣ An explicit data format requires almost 200kb 
of memory, while our binary encoding fits in just 
128 bits, the same space as just 4 floats. This 
results in a massive 1500x compression rate 
without significant quality loss.

train test

AE 0.853 1.247

VAE-N 0.851 1.287

VAE-B 1.024 1.464

VAE-bin 1.027 1.464

Fig. 4: Average Chamfer distance between original objects and 
reconstructions generated by different models.

Fig. 3: Our PointNet-based model architecutre.

Fig. 5: Reconstructions of selected objects from the test dataset. The quantity below images is the 
Chamfer distance from the original. The average CD is 1.29 for VAE-N and 1.46 for VAE-bin.
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Fig. 6: Artificial objects generated from binary representations 
sampled from a multidimensional Bernoulli distribution with .p = 0.5

Fig. 7: Adding armrests to a chair by performing arithmetic on binary representations.

Fig. 8: Performing smooth interpolation on binary representations. The intermediate representations are 
obtained by flipping an increasing number of bits in the encoding, according to a random permutation.

‣ We suspect our data can be naturally 
divided into several subcategories. 

‣ Such data could be well fitted with a mixture 
distribution. 

‣ We introduce a new, discrete variable , 
which determines the distribution of . Then 

 has a mixture distribution.  

‣ The distribution of  is still determined by a 
transformation of . 

‣ The encoder now produces mixture weights 
and component parameters. 

‣ Each sample is assigned to a cluster 
corresponding to the heaviest component.
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Fig. 9: Randomly selected objects from 3 
chosen clusters (out of 10).

Fig. 10: A t-SNE visualiztion of the representation space 
of the standard VAE (left) and the mixture VAE (right).
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In partnership and following the work of M. Zamorski, M. Zięba, R. Nowak, W. Stokowiec, and T. Trzciński: 
“Adversarial autoencoders for generating 3d point clouds,” 2018.

Following the work of D. P. Kingma, S. Mohamed, D. J. Rezende, and M. 
Welling, “Semi-supervised learning with deep generative models”, 

and R. Shu, “Gaussian mixture vae: Lessons in variational inference, 
generative models and deep nets.” 
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