

HumMorph: Generalized Dynamic Human Neural Fields from Few Views

Jakub Zadrozny, Hakan Bilen University of Edinburgh

CV4Metaverse at CVPR 2025 Nashville | 11th June 2025

Dynamic Free-Viewpoint Human Rendering

Plenty of applications related to the Metaverse & beyond (movie production, immersive 3D communication, etc.).

Why HumMorph?

Subject-specific approaches

Require test-time optimization

Needs extensive observations (typically ca. 30 frames)

Other generalized approaches

Assume accurate body shape and pose parameters (impractical)

HumMorph (ours, generalized)

Uses only feed-forward passes during inference

Requires less observed views (1-4)

Learns a prior, inpaints unobserved details

Significantly more robust to errors in the noisy pose parameters

Estimated Body Shape and Pose

Accurate body shape and pose parameters are usually estimated from multi-view camera setups.

They should be directly estimated from the input views instead.

Fig.: Frames with skeleton annotated in red using accurate (left) and estimated (right) body shape and pose parameters.

Parameters estimated using HybrIK (Li et al., CVPR '21).

The VoluMorph module

Unprojection + Undeformation

We use **linear blend skinning** for body deformations.

They identify 3D points (x_c and x_p) that correspond to the same body point in canonical and observed poses.

You can think of the *undeformation* as dragging voxels around according to the skinning deformation.

Input: body pose Ω

Zoom-Out to the Full Pipeline

Zoom-Out to the Full Pipeline

Results with Estimated Poses

Numbers in parentheses indicate the range of observed views.

Hu et al., SHERF, ICCV 2023

Results with Estimated Poses

Numbers in parentheses indicate the range of observed views.

Li et al., *GHuNeRF*, 3DV 2024 Hu et al., *SHERF*, ICCV 2023

Recap & thank you! Questions?

Limitations: modelling loose clothing and object interactions is not addressed properly, we use ground-truth camera poses.